First ever computer reconstructs a virus in its biological entirety

First ever computer reconstruction of a virus, including its complete native genome leading the way to alternative antibiotics.

[Jan 21, 2023: Nicola Jones, Aston University]

Open way for investigating biological processes which can’t currently be fully examined because the genome is missing. (CREDIT: Creative Commons)
  • First ever computer reconstruction of a virus, including its complete native genome

  • Will open way for investigating biological processes which can’t currently be fully examined because the genome is missing

  • Could lead the way to research into an alternative to antibiotics.

An Aston University researcher has created the first ever computer reconstruction of a virus, including its complete native genome.

Although other researchers have created similar reconstructions, this is the first to replicate the exact chemical and 3D structure of a ‘live’ virus.

The breakthrough could lead the way to research into an alternative to antibiotics, reducing the threat of anti-bacterial resistance.

The research Reconstruction and validation of entire virus model with complete genome from mixed resolution cryo-EM density by Dr Dmitry Nerukh, from the Department of Mathematics in the College of Engineering and Physical Sciences at Aston University is published in the journal Faraday Discussions.


Related Stories


The research was conducted using existing data of virus structures measured via cryo-Electron Microscopy (cryo-EM), and computational modelling which took almost three years despite using supercomputers in the UK and Japan.

The breakthrough will open the way for biologists to investigate biological processes which can’t currently be fully examined because the genome is missing in the virus model.

This includes finding out how a bacteriophage, which is a type of virus that infects bacteria, kills a specific disease-causing bacterium.

Segment of reconstructed genome model (red to green to blue), placed over the cryo-EM backbone (white). (CREDIT: Dr Dmitry Nerukh)

At the moment it is not known how this happens, but this new method of creating more accurate models will open up further research into using bacteriophage to kill specific life-threatening bacteria.

This could lead to more targeted treatment of illnesses which are currently treated by antibiotics, and therefore help to tackle the increasing threat to humans of antibiotic resistance.

Dr Nerukh said: “Up till now no one else had been able to build a native genome model of an entire virus at such detailed (atomistic) level.

RNA piece 2057-2085, its generated double-strand all-atom structure (left) and corrected hairpin all-atom structure (right). The nucleic backbone is highlighted in orange. (CREDIT: (CREDIT: Dr Dmitry Nerukh)

“The ability to study the genome within a virus more clearly is incredibly important. Without the genome it has been impossible to know exactly how a bacteriophage infects a bacterium.

“This development will now allow help virologists answer questions which previously they couldn’t answer.

“This could lead to targeted treatments to kill bacteria which are dangerous to humans, and to reduce the global problem of antibiotic-resistant bacteria which are over time becoming more and more serious.”

The team’s approach to the modelling has many other potential applications. One of these is creating computational reconstructions to assist cryo-Electron Microscopy – a technique used to examine life-forms cooled to an extreme temperature.

For more science news stories check out our New Innovations section at The Brighter Side of News.


Note: Materials provided above by the Aston University. Content may be edited for style and length.

Like these kind of feel good stories? Get the Brighter Side of News' newsletter.


Joseph Shavit
Joseph ShavitSpace, Technology and Medical News Writer
Joseph Shavit is the head science news writer with a passion for communicating complex scientific discoveries to a broad audience. With a strong background in both science, business, product management, media leadership and entrepreneurship, Joseph possesses the unique ability to bridge the gap between business and technology, making intricate scientific concepts accessible and engaging to readers of all backgrounds.