500-million-year-old fossil prompts a rethink of the evolution of insects

It’s what’s inside Stanleycaris’ head that has researchers most excited. Remains of the brain are still preserved after 506 million years.

[July 14, 2022: David McKay, Royal Ontario Museum]

Reconstruction of a pair of Stanleycaris hirpex; upper individual has transparency of the exterior increased to show internal organs. Nervous system is shown in light beige, digestive system in dark red. (CREDIT: Illustration by Sabrina Cappelli © Royal Ontario Museum)

ROM (Royal Ontario Museum) revealed new research based on a cache of fossils that contains the brain and nervous system of a half-billion-year-old marine predator from the Burgess Shale called Stanleycaris. Stanleycaris belonged to an ancient, extinct offshoot of the arthropod evolutionary tree called Radiodonta, distantly related to modern insects and spiders.

These findings shed light on the evolution of the arthropod brain, vision, and head structure. The results were announced in the paper, “A three-eyed radiodont with fossilized neuroanatomy informs the origin of the arthropod head and segmentation”, published in the journal Current Biology.

It’s what’s inside Stanleycaris’ head that has the researchers most excited. In 84 of the fossils, the remains of the brain and nerves are still preserved after 506 million years.

“While fossilized brains from the Cambrian Period aren’t new, this discovery stands out for the astonishing quality of preservation and the large number of specimens,” said Joseph Moysiuk, lead author of the research and a University of Toronto (U of T) PhD Candidate in Ecology and Evolutionary Biology, based at the Royal Ontario Museum. “We can even make out fine details such as visual processing centers serving the large eyes and traces of nerves entering the appendages. The details are so clear it’s as if we were looking at an animal that died yesterday”.


Related News


The new fossils show that the brain of Stanleycaris was composed of two segments, the protocerebrum and deutocerebrum, connected with the eyes and frontal claws, respectively.

“We conclude that a two-segmented head and brain has deep roots in the arthropod lineage and that its evolution likely preceded the three-segmented brain that characterizes all living members of this diverse animal phylum,” added Moysiuk. In present day arthropods like insects, the brain consists of protocerebrum, deutocerebrum, and tritocerebrum.

While the difference of a segment may not sound game-changing, it in fact has radical scientific implications. Since repeated copies of many arthropod organs can be found in their segmented bodies, figuring out how segments line up between different species is key to understanding how these structures diversified across the group.

Pair of fossil specimens of Stanleycaris hirpex, specimen ROMIP 65674.1-2. (CREDIT: Jean-Bernard Caron/ © Royal Ontario Museum)

“These fossils are like a Rosetta Stone, helping to link traits in radiodonts and other early fossil arthropods with their counterparts in surviving groups.”

In addition to its pair of stalked eyes, Stanleycaris possessed a large central eye at the front of its head, a feature never before noticed in a radiodont.

Paper summary, showing the interpretation of the nervous system from fossils of Stanleycaris and implications for understanding the evolution of the arthropod brain. The brain is represented in red and the nerve cords in purple. (CREDIT: Jean-Bernard Caron © Royal Ontario Museum)

“The presence of a huge third eye in Stanleycaris was unexpected. It emphasizes that these animals were even more bizarre-looking than we thought, but also shows us that the earliest arthropods had already evolved a variety of complex visual systems like many of their modern kin” said Dr. Jean-Bernard Caron, ROM’s Richard Ivey Curator of Invertebrate Palaeontology, and Moysiuk’s PhD supervisor.

“Since most radiodonts are only known from scattered bits and pieces, this discovery is a crucial jump forward in understanding what they looked like and how they lived,” added Caron, who is also an Associate Professor at the U of T, in Ecology & Evolution and Earth Sciences.

In the Cambrian Period, radiodonts included some of the biggest animals around, with the famous “weird wonder” Anomalocaris reaching up to at least 1 meter in length. At no more than 20 cm long, Stanleycaris was small for its group, but at a time when most animals grew no bigger than a human finger, it would have been an impressive predator. Stanleycaris’ sophisticated sensory and nervous systems would have enabled it to efficiently pick out small prey in the gloom.

With large compound eyes, a formidable-looking circular mouth lined with teeth, frontal claws with an impressive array of spines, and a flexible, segmented body with a series of swimming flaps along its sides, Stanleycaris would have been the stuff of nightmares for any small bottom dweller unfortunate enough to cross its path.


Note: Materials provided above by the Royal Ontario Museum. Content may be edited for style and length.

Like these kind of feel good stories? Get the Brighter Side of News' newsletter.


Joshua Shavit
Joshua ShavitScience and Good News Writer
Joshua Shavit is a bright and enthusiastic 18-year-old with a passion for sharing positive stories that uplift and inspire. With a flair for writing and a deep appreciation for the beauty of human kindness, Joshua has embarked on a journey to spotlight the good news that happens around the world daily. His youthful perspective and genuine interest in spreading positivity make him a promising writer and co-founder at The Brighter Side of News. He is currently working towards a Bachelor of Science in Business Administration at the University of California, Berkeley.